Selasa, 07 Oktober 2014

Pengertian dan Jenis-jenis Matriks

Pengertian Matriks


Matriks adalah kumpulan bilangan yang disusun dalam bentuk baris dan kolom.
Bilangan yang tersusun dalam baris dan kolom disebut elemen matriks.
Nama matriks ditulis dengan menggunakan huruf kapital.

Banyaknya baris dan kolom matriks disebut ordo matriks.
Bentuk umum :

Jenis - Jenis Matriks
Matriks terdiri atas berbagai jenis antara lain, matriks nol, matriks baris, matriks kolom, matriks persegi, matriks segitiga atas, matriks segitiga bawah, matriks diagonal, dan matriks identitas.
Agar Anda lebih memahami mengenai jenis matriks tersebut perhatikan uraian materi berikut.
a. Matriks Nol
Matriks nol adalah matriks yang semua elemennya bernilai nol, contohnya
Semua unsur pada matriks A, B, dan C adalah angka 0, sehingga disebut sebagai matriks nol.
b. Matriks Baris
Matriks baris adalah matriks yang hanya terdiri atas satu baris saja, contohnya
Matriks P berordo 1 × 3, Q berordo 1 × 2, dan R berordo 1 × 4. Matriks P, Q, dan R di atas hanya memiliki satu baris saja sehingga disebut sebagai matriks baris.
c. Matriks Kolom
Matriks kolom adalah matriks yang terdiri atas satu kolom, contohnya
Matriks K berordo 2 × 1, matriks L beordo 3 × 1, dan matriks M berordo 4 ×1. Matriks K, L, dan M di atas hanya memiliki satu kolom saja sehingga disebut sebagai matriks kolom.
d. Matriks Persegi
Matriks persegi adalah matriks yang banyak baris dan banyak kolomnya sama, contohnya
Matriks N berordo 2 × 2 dan matriks M berordo 3 × 3. Karena banyaknya baris sama dengan banyaknya kolom, maka matriks N dan M disebut sebagai matriks persegi.
e. Matriks Segitiga Atas
Matriks segitiga atas adalah matriks persegi yang elemen di bawah diagonal utamanya bernilai nol, sebagai contohnya
 diagonal utama
f. Matriks Segitiga Bawah
Matriks segitiga bawah adalah matriks persegi yang elemen di atas diagonal utamanya bernilai nol, contohnya
 diagonal utama
g. Matriks Diagonal
Matriks diagonal adalah matriks persegi yang elemen-elemennya bernilai nol, kecuali pada diagonal utamanya tidak selalu nol, sebagai contoh
h. Matriks Identitas
Matriks identitas adalah matriks skalar yang elemen-elemen pada diagonal utamanya bernilai 1,